Chimeric Spectra and Data-Driven DIA analysis

reSpect, DISCo, Quantic

reSpect

Finding chimeric peptides from high resolution MS/MS spectra

Standard Shotgun (MS/MS) Workflow

Chimeric MS/MS

 Chimeric spectra contain multiple precursor ions

Factors Contributing To Chimeric Spectra

• Chimeric spectra are a common occurrence in LC-MS/MS

- **proportional** to sample complexity
- **proportional** to selection window size
- influenced by chromatography conditions

Database search algorithms only report one peptide per spectrum!

Search Algorithms Do Not Find Chimeras

- Selection window of the instrument is much wider than the peak resolution
 - Search algorithms use only the measured precursor mass
 - For example: ±25 ppm
- Selection window may include peptides outside the search mass
 - Those peptides never considered during search
 - For example: different charge leads to mass outside ±25 ppm tolerance

Chimeric MS/MS

reSpect

- Allows identification of chimeric peptides from spectra.
- Works with existing search algorithms.

reSpect: The Approach

reSpect: Attenuation Original P = 0.999

reSpect: Attenuation *I^{rs}=(1-P)*I^{orig}*

reSpect: Second Match P = 0.995

reSpect: Mass Differences

reSpect Mass Differences

Chimeric Depth

• Chimeric spectra may contain more than two precursors

 reSpect can be iteratively applied until novel PSMs are exhausted

reSpect: The Original

1 2 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3	SKVVVFEDAPAGIAAGK, MH+ 1658.9112, m/z 553.6419 a 1* 2* 3* File: 120913-Yeast-02.42285.42285.3, Scan: 42285, Exp. m/z: 554.31, Charge: 3 5	b+ 88.0393	b2+ 44.5233	b3+ 30.0180	# Se	eq # S 17 K 16	y+	y2+	y3+
	D 1 2 3 c 1 2 3 x 1 2 3 y 1 2 3 y 1 2 3 y 1 2 3 y 1 2 3 Desciencial 80% 80% NH3 (*) 70% H20 (o) 60% 60% Mass Type: 50% @ Mono Avg Mass Tol: 0.5 Jopdate 20% Peak Assignment: 10%	216.1343 315.2027 414.2711 513.3395 660.4079 789.4505 975.5146 1072.654 1143.6045 1143.6045 1143.6045 1133.7100 1384.7471 1455.7842 1512.8057	105.5708 158.1050 207.6392 257.1734 330.7076 395.2289 452.7424 488.2609 536.7873 572.3059 600.8166 657.3586 692.8772 728.3957 756.9065	72.7163 105.7391 138.7619 171.7647 220.8075 263.8217 302.1640 325.8430 358.1940 381.8730 400.8802 438.5748 462.2539 485.9329 504.9401	2 1 3 N 4 N 5 N 6 I 7 I 8 I 9 J 10 I 11 J 12 I 13 I 14 J 15 J 16 I	X 16 Y 15 Y 15 Y 14 Y 13 F 12 I 17 I 10 I 10	1443.7842 1344.7158 1245.6474 1146.5790 999.5106 870.4680 755.4410 684.4039 587.3511 516.3140 459.2926 346.2085 275.1714 204.1343	722.3957 672.8615 623.3273 573.7931 500.2589 435.7376 378.2241 342.7056 294.1792 258.6606 230.1499 173.6079 138.0893 102.5708	24.6312 481.9329 448.9101 415.8873 382.8645 333.8417 290.8275 252.4852 228.8062 196.4552 172.7762 153.7690 116.0743 92.3953 68.7163

reSpect: The First Iteration

reSpect: The Second Iteration

reSpect: The Third Iteration

PepXML Viewer: /proteon: × → C	Comet-pepuni COMET/Lorikeet Spectrum COMET/Lorikeet Spectrum COMET/Lorikeet Spectrum Cometry	'Lorikeet Spectn Daric=1&Pep	an × C P =STEQIRF	epXML Viewe FATAAVLF	: /prote	i=/pro	teomics/ds	nteynb/dat	a/mhoopm	ann/HiRes/semitryp/12 Q ☆ 🔘
lons:	STEQJRPFATAAVLR, MH+ 1659.9177, m/z 553.9774	b+	b2+	b3+	# 5	eq #	y+	y2+	y3+	
a 🗆 1 ⁺ 🔲 2 ⁺ 🔲 3 ⁺	File: 120913-Yeast-02_rs_rs_rs.42285.42285.3, Scan: 42285, Exp. m/z: 554.3118, Charge: 3	88.0393	44.5233	30.0180	1	S 15				
b ≤ 1 ⁺ ≤ 2 ⁺ ≤ 3 ⁺ c = 1 ⁺ = 2 ⁺ = 3 ⁺	2	189.0870 318 1296	95.0471	63.7005	2	 I 14 F 13 	1572.8857	736 4226	524.9667	
x 1 ⁺ 2 ⁺ 3 ⁺		446.1882	223.5977	149.4009	4	Q 12	1342.7954	671.9013	448.2700	
y ♥ 1 ⁺ ♥ 2 ⁺ ♥ 3 ⁺	100%	559.2722	280.1397	187.0956	5	I 11	1214.7368	607.8720	405.5838	
Z U I U Z U 3 [Deselect All]	90%	715.3733	358.1903		6	R 10	1101.6527	551.3300	367.8891	
Neutral Loss:	80%	812.4261	406.7167	271.4802	7	P 9	945.5516	473.2795	315.8554	
\square NH ₃ (*) \square H ₂ O (o)	70%	959.4945	480.2509	320.5030	8	F 8	848.4989	424.7531	283.5045	
Immonium ions	60%	1030.5316	566 2933	344.1821	9	A /	701.4304	351.2189	234.4817	
Mass Type:	50%	1202.6164	601.8118	401.5437	11	A 5	529.3457	265.1765	177.1201	
Mono Avg	40%	1273.6535	637.3304	425.2227	12	A 4	458.3085	229.6579	153.4410	
Mass Tol: 0.5	30% 8	1372.7219	686.8646	458.2455	13	V 3	387.2714	194.1394	129.7620	
Update		1485.8060	743.4066	495.9402	14	L 2	288.2030	144.6051	96.7392	
Peak Assignment:		[Click] to me	ve table		15	R 1	175.1190	88.0631	59.0445	
Most Intense		failed to m	ine table							
Nearest Match Peak Detect	100 200 300 400 500 600 700 800 900 1000 1100									
Peak Labels:	Click and drag in the plot to zoom X: 🖉 Y: 🔲 Zoom Out Print 🛛 Enable tooltip									
● lon ● m/z	MS1 scan:									
None										
Width: 650	554.31									
Height: 400	550 551 552 553 554 555 556 557 558 559									
					_					1
										-
COMET/Lorikeet Spectrun (TPP v0.0 Development tr	ı Viewer unk rev 0, Build 201309231229 (linux))									

reSpect: No Fractionation

- 4 Replicate Yeast Q-Exactive Runs
- 347,000 spectra
- 30.3% Boost in Distinct Peptide Identification

reSpect: Medium Fractionation

- iPRG2013 study
- 118,000 spectra
- Orbitrap Velos, 14 RP fractions of whole cell lysate of human peripheral blood mononuclear cells
- 8.1% Boost in Distinct Peptide dentifications

reSpect: High Fractionation

- Human Cancer
 Cell Line
- Orbitrap Velos, 48 fractions

 12.9% Boost in Distinct Peptide Identifications

Different Datasets, Different Chimeras

 Sample complexity and instrument settings have largest impact on chimeric spectra

Precursor analysis algorithms can estimate number of precursors to solve.

These numbers correlate with PSMs identified.

reSpect: Different Datasets

reSpect: Identifies More Proteins

reSpect in the TPP

🔹 ISB/SPC T	Trans Proteomic F	2 × +									
🗲 🔶 lo	calhost/tpp-bin/	tpp_gui.pl		Ę] ▼ C Q Search						
ISB/SPC Trans Proteomic Pipeline - home Home Files Account Pre-Process mzXML Utils Analysis Pipeline (Comet) Decoy Utilities Spectra ST Tools Jobs 3 20											
Home	FILES	ACCOUNT	PRE-PROCESS	mzXML UTILS	QualScore						
Message	s [Show/H	Libra Conditions	ily c								
• Wel	come, guest.				RT Prediction RT Training						
Welcome											

reSpect in the TPP

◆ ISB/SPC Trans Proteomic P × +									
🗲 🛞 localho	ost/tpp-bin/tpp_gui	pl		⊽ C Q Sec	arch	☆ 自 ♥	↓ ☆ 9	≡	
ISB/SPO	C Trans P	roteomic P	ipeline - respec	:t				Â	
Home Files		cess I mzXMI Utils I	Analysis Pineline (Comet) Dec	ov I Htilitics I Spectra ST Tor	als Llobs 3 🕅	You are logged in	as quest log 0	+	
Home respect QualScore Compare Proteins Libra Conditions DNA to AA RT Prediction RT									
Message	s Show[+]								
d America			Cohama (1184a 1						
1. Specify			[Show / Hide]					١	
c:/inetpub/wwwroot/ISB/data/pepxml.xml									
						Sen	Remove		
Add Files Or choose from list c:/Inetpub/wwwroot/ISB/data/ [xml]									
2 Ontions	[Show/Hide	1						-	
Minimum n	robability: 0.5							١١	
m/z tolerance (ions): 0.1 Daltons									
Enter addit	ional options to pas	ss directly to the comm	and-line (expert use only!)						
3. Look fo	r Chimeric Spe	ctra!						_	
Run reS	pect								

reSpect: Summary

- Explained peaks are attenuated according to the quality of the match amongst medium and high scoring spectra
- Attenuated spectra are researched with wide mass window and assuming all charges
- Uses same validation with PeptideProphet and iProphet to estimate error rates
- Automated within the TPP framework
- Identifies new peptide sequences even in highly fractionated data
- Works best on high mass accuracy MS² data
 - Q-Exactive
 - Orbitrap Velos
 - QTOF
- Also works nicely on standard mass accuracy MS² data
 - LTQ

Principles of Data Independent Acquisition

Slides courtesy of Dr. Mukul Midha

Principle of sequentially windowed acquisition in DIA/SWATH-MS

Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial, Ludwig, C. et al Molecular Systems Biology 2018

SWATH-MS/DIA experiment setup.....So much to choose from!!

What are the critical acquisition attributes for DIA/SWATH-MS?

- ✓ High resolution MS/MS
- ✓ Cycle Time
- ✓ Q1 Isolation Windows
- ✓ Dynamic Range

DIA Acquisition-Quantitation

<u>Data Points Per Peak</u> (DPPP)

<7 DPPP = under sampling

7-10 DPPP = optimal sampling

ex. 30 s peak width at base
3 s cycle will collect 10 DPPP
<3 s will over sample
>3 s will under sample

>10 DPPP = over sampling

DIA/SWATH-MS precursor isolation windows

windows x MS2 acquisition time = cycle time
42 (20 m/z width, 400-1200 m/z, 1 Da overlap) x 60 ms = 3.6 s

Choices are dependent on chromatography, application and platform.

DIA data analysis - retention time normalization

- iRT spike
 - set of non-endogenous peptides
 - Used to convert to iRT scale (linear)

- Observed peptides/features
 - High-precision iRT (non-linear)
 - Anchor points

DIA/SWATH-MS: Library based and library free approach

Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data, Ying S. Ting et al , MCP, 2015

Trans-Proteomic Pipeline a.k.a. TPP

Highlights

- Works on timsTOF PASEF DIA data
- DIA Windows is not required if isolation_window info available
- Multiple scan windows sizes for data point extraction
- Minimum amount of correlation required to select fragments depends on the scan window size (number of data points)
- Kernel Density smoothing of raw signals
- Better utilization of multi-threading resources
- Fail-safe mzML file reading

OPTIONS:

TARGETS=<targets_file> Use specified <target_file> to look for MS1 features (default: use HardKlör internally)

UMPTARGETS=<targets_file> Use specified <target_file> to look for MS1 features (default: use HardKlör internally)

HKCONFIG=<config_file> Use specified <config_file> for Hardkl r(default: use Hardklor.conf) WINDOWS=<DIA windows file>

MAXSCANWINDOW=<number>: Use specified maximum number of scans over which to track (default=17). This option applies only when the UMPTARGETS are not specified, when UMPTARGETS are specified the SCANWINDOW is set to the maximum peak width defined in the UMPTARGETS file.

MINSCANWINDOW=<number>: Use specified minimum number of scans over which to track (default=7). This option applies only when the UMPTARGETS are not specified, when UMPTARGETS are specified the SCANWINDOW is set to the maximum peak width defined in the UMPTARGETS file.

AVGSCANHALF=<number>: Use specified number of +- scans over which to average MS1 scans prior to feature detection, set to 0 for no averaging. (default=0)

MZPREC=<number>: Set mz precision in 'points after the decimal', used for binning and averaging. Applies in combination with AVGSCANHALF= greater than 0. (default=2.1)

MININTENS=<number>: Filter out peaks below minimum intensity factor in each spectrum, set as a non-negative number (default=off)

MAXPPM=<number>: Maximum Allowed PPM signal offset best defined in powers of 2 (e.g. 2, 4, 8,

16, etc. default=32)

PPMFWHM=<number>:

IMFWHM=<number>:

Full Width at Half Maximum expected for Mass PPM profile of peaks (default=16) Full Width at Half Maximum expected for Inverse Reduced Ion Mobility profile

of peaks (default=0.05)

IONMOBBINS=<number>:Set number of bins to partition Ion Mobility. (default=10)SUFFIX=<string>:Set suffix for output file (default='_ds')THREADS=<number>:Use specified number of threads (default=1).STARTSCAN=<number>:Starting scan to process (default=1).ENDSCAN=<number>:Ending scan to process (default: process until the end of the run).

Algorithm

- DISCo matches identified precursor signals to fragment signals by looking for those that have a similar shape in Retention Time Space
- Fragment signals are sorted according to the following criteria, in order:

entropy \rightarrow distance \rightarrow correlation \rightarrow intensity

- Type I Error Rate α and Type II Error Rate β , N is sample size (points across peak)
- For each MS¹ target the following MS² peaks are selected:
 - Up to 1000 peaks with correlation $\geq rMax$ ($\alpha = 0.01$, $\beta = 0.05$)
 - Up to 500 peaks with correlation $\geq rMid1$ ($\alpha = 0.03, \beta = 0.1$)
 - Up to 200 peaks with correlation $\geq rMid2$ ($\alpha = 0.05, \beta = 0.2$)
 - Up to 100 peaks with correlation $\geq rMin$ ($\alpha = 0.1, \beta = 0.333$)
 - Peak intensities are scaled by the correlation

Data-Driven DIA Workflow

For TTOF 6600 Converter Choices Matter!

Benchmarking HeLa/Halo Dataset

Sample	HeLa Background (ug)	Halo Variable (fmol)	Halo E/x Ratio	Halo log2 (E/x)
Α	3.52	1.56	256	E/A=8
В	3.52	6.25	64	E/B=6
С	3.52	25	16	E/C= 4
D	3.52	100	4	E/D= 2
Е	3.52	400	1	E/E=0

Hela/Halo TTOF6600 : DISCO – DIAUmpire – DISCO w/ Umpire Targets

DISCO - DIAUmpire - DISCO w/ DIAUmpire Targets

Mass-Spectrometry Setups

	Triple TOF 6600	Q Exactive HF
Sample Type	HeLa Halo	HeLa Halo
Sample Load (µg)	3.5	0.88
Column Details	500µm X 150mm X 2.4µm	75μm X 500mm X 1.9μm
Flow (nl/min)	5000	300
Gradient length (min)	98	98
Median Peak Width (sec)	22.2	15.6
Acquisition Mode	SWATH	DIA
# Windows	100 variable	100 fixed (6m/z)
MS1 m/z range	400-1250	400-1000
MS1 scans- Accumulation time/Max fill time	250ms	200ms
MS2 scans- Accumulation time/Max fill time	25ms	10ms
Cycle Time (sec)	2.92	4.45

DISCO Peptide Identification: TTOF 6600 vs QE HF

DISCO Quantitation Options

• MS1

 For each spectrum coming from an MS1 feature, DISCO stores the integrated precursor peak intensity stored as precursor_intensity in mzML

MS2 using QuanticParser

 For each PSM, Quantic computes the Annotated Ion Current (antic_score) by summing the intensities of annotated fragments in the spectrum

Hybrid – Combined MS1 and MS2 Quantitation

- Average of MS1 and MS2 quantitation results

DISCO Peptide Quantitation from PSMs

MS1

- For each run r, for each peptide ion s compute
 - **maximum MS1 precursor_intensity** over all PSMs in run *r* matching peptide ion s

 $I_s^r = \max(I_x: \forall (PSMs x \text{ in } r \text{ where } x \text{ matches } s))$

- probability weighted MS1 intensity over all PSMs in r matching s,

$$W_{s}^{r} = \frac{\sum_{\forall (PSMs \ x \ in \ r \ matching \ s)} p_{p}(x) p_{i}(x) I_{x}}{\sum_{\forall (PSMs \ x \ in \ r \ matching \ s)} p_{p}(x) p_{i}(x)}$$

where:

 I_x is the precursor_intensity of PSM x

 $p_p(x)$ is PeptideProphet probability and $p_i(x)$ is iProphet probability, of PSM x

DISCO Peptide Quantitation from PSMs

MS2

- For each run r, for each peptide ion s compute
 - **max MS1 antic_score** over all PSMs in run *r* matching peptide ion *s*

 $A_{s}^{r} = \max(A_{x}: \forall (PSMs x \text{ in } r \text{ where } x \text{ matches } s))$

- probability weighted antic_score over all PSMs in r matching s,

$$a_{s}^{r} = \frac{\sum_{\forall (PSMs \ x \ in \ r \ matching \ s)} p_{p}(x) p_{i}(x) A_{x}}{\sum_{\forall (PSMs \ x \ in \ r \ matching \ s)} p_{p}(x) p_{i}(x)}$$

where:

 A_x is the antic_score of PSM x

 $p_p(x)$ is PeptideProphet probability and $p_i(x)$ is iProphet probability, of PSM x

DISCO Peptide Quantitation from PSMs

Hybrid

- For each run *r*, for each peptide ion *s* compute
 - Compute Hybrid intensity

$$\mathrm{H}_{\mathrm{S}}^{\mathrm{r}} = \frac{1}{2}(\mathrm{I}_{\mathrm{S}}^{\mathrm{r}} + \mathrm{a}_{\mathrm{S}}^{\mathrm{r}})$$

where:

 I_s^r is the maximum precursor_intensity of peptide ion s in run r a_s^r is the weighted antic_score of peptide ion s in run r

DISCO Peptide Quantitation Sample Means

- For each peptide ion s over n replicates r₁, ..., r_n of classification c, compute sample means:
- MS1

$$\overline{W_s^c} = \frac{1}{n} \sum_{i=1}^n W_s^{r_i}$$

• MS2

$$\overline{a_s^c} = \frac{1}{n} \sum_{i=1}^n a_s^{r_i}$$

Hybrid

$$\overline{\mathrm{H}_{\mathrm{S}}^{\mathrm{c}}} = \frac{1}{n} \sum_{i=1}^{n} \mathrm{H}_{\mathrm{S}}^{\mathrm{r}_{\mathrm{i}}}$$

DISCO Halo Quantitation (not corrected for background)

DISCO Halo Quantitation (corrected for background)

Spectronaut Halo Quantitation (corrected for background)

Conclusions

- Choice of data converter and centroiding options are important to ensure identifications are not lost due to the file converter
- DISCO identification rate improves upon DIAUmpire
 - Combining approaches maximizes data-driven identifications
- DISCO quantitation computes accurate ratios, reflecting the ground truth of the dataset
 - Hybrid quantitation reduces variance in ratios
 - Correcting ratios using the median background ratio is important for accurate ratio estimation

QuanTic

Applied to CID Cleavable Isobaric Tag Quantitation

Journal of Proteome • research

pubs.acs.org/jpr

Article

ACS AUTHORCHOICE

A Collision-Induced Dissociation Cleavable Isobaric Tag for Peptide Fragment Ion-Based Quantification in Proteomics

Xiaobo Tian, Marcel P. de Vries, Hjalmar P. Permentier, and Rainer Bischoff*

ABSTRACT: Quantifying peptides based on unique peptide fragment ions avoids the issue of ratio distortion that is commonly observed for reporter ion-based quantification approaches. Herein, we present a collision-induced dissociation-cleavable, isobaric acetyl-isoleucine-proline-glycine (Ac-IPG) tag, which conserves the merits of quantifying peptides based on unique fragments while reducing the complexity of the b-ion series compared to conventional fragment ion-based quantification methods thus facilitating data processing. Multiplex labeling is based on selective N-terminal dimethylation followed by derivatization of the ε -amino group of the C-terminal Lys residue of LysC peptides with isobaric Ac-IPG tags having complementary isotope distributions on Pro-Gly and Ac-Ile. Upon fragmentation between Ile and Pro, the resulting y ions, with the neutral loss of Ac-Ile, can be distinguished between the different labeling channels based on different numbers of isotope labels on the Pro-Gly part and thus contain the information for relative quantification, while b ions of different labeling channels have the same m/z values. The proteome quantification capability of this method was demonstrated by triplex labeling of a yeast proteome spiked with bovine serum albumin (BSA) over a 10-fold dynamic range. With the yeast proteins as the background, BSA was detected at ratios of 1.14:5.06:9.78 when spiked at 1:5:10 ratios. The raw mass data is available on the ProteomeXchange with the identifier PXD 018790.

KEYWORDS: isobaric labeling, tandem mass spectrometry, fragment ion, quantitative proteomics, stable isotope

Concept of the Ac-AG-tag

Fig. 1. Schematic view of the Ac-AG approach.

A) Isobaric labeling steps;

B) LC-MS/MS concept map for a mixture of triplex labeled samples;

C) Functional design of the Ac-AG-PNP tag (¹³C isotope locations are marked with"*").

Studying peptide fragmentation with various NCEs

NCE **18** for producing peptide-coupled reporter-ion NCE **28** for formation of fragments of the peptide backbone Quantification at the peptide level

A) precursor isolation with a window of 0.6 Th and MS2 spectrum of triplex-labeled N-dime-GTDWLANK-GA-Ac with a combined NCE of 18 and 28. **B)** Peptide-coupled reporter-ions in the DDA MS2 spectra at ratios of 1:10:20, 1:2:5, 1:1:1, 5:2:1 and 20:10:1.

Quantification of triplex labeled LysC BSA

Calculating the ratio for PSM 6134 (AEFVEVTK) from triplex labeled BSA mixed at a ratio of 5:2:1

scan_number	intensity (+0)	intensity (+1)	intensity(+2)	total_intensity (3 channels)	sequence
6134	72202240	28389638	13828063	114419941	AEFVEVTK

Ratio of 'spectrum of 6134' = 72202240 / 14302492.63 : 28389638 / 14302492.63 : 13828063 / 14302492.63 = 5.05 : 1.98 : 0.97

Calculating peptide ratios based on top 3 most intense PSMs.

Calculating protein ratios based on top 3 most intense peptides.

A) Log2-normalized ratio distribution at the PSM level at a mixing ratio of 1:1:1; **B)** Log2-normalized ratio distribution at the peptide level at a mixing ratio of 1:1:1; **C)** Log2-normalized ratio at the peptide level at a mixing ratio of 10:5:1; **D)** Log2-normalized ratio at the peptide level at a mixing ratio of 1:5:10. Expected values for log2-normalized mixing ratios are shown as dotted lines.

QuanTic New Option for Quantitation

K:311.17:-155.1:-156.1:-157.1

<amino acids, n, or
c>:<mass_shift>:<neut_loss1>:...:<neut_lossN> Specify
modifications with neutral losses for quantitation (default: off)

*Quantify the intensity of neutral loss peaks associated with a modification for all fragments retaining the modification, when all are available for a given fragment ion, skip y1

PepXML Viewer: interact-yeast.quant.pep.xml

Summary •

Display Options 🔹 Pick Columns 🔻

Other Actions 🔹 Messages 🔹 🤤 Filtering Options 🔹

Page 1 of 17

1

FIRST **1** 2 3 4 5 6 11 NEXT LAST

PROB	SPECTRUM	EXPECT	IONS	PEPTIDE	PROTEIN	NPROTS	CALC_MASS	QUANTIC	QUANTIC_TIC	QUANTIC_QUANT	QUANTIC_STRING
<u>1.0000</u>	Ac-IPG-yeast-1-1-1.06237.06237.3	0.00011	<u>10/52</u>	K. <u>n29.04AVYAGENFHHGDK439.26L</u>	sp P00925 ENO2_YEAST	1	1895.9385	3.89711e+06	4.34866e+07	1347818.1,1269763.4,735574.9	M(-155.1),0,581.291,0
<u>1.0000</u>	Ac-IPG-yeast-1-1-1.09376.09376.3	0.000245	<u>11/64</u>	K. <u>n29.04TFAEAMRIGSEVYHNLK439.26</u> .S	sp P00925 ENO2_YEAST	1	2304.1791	1.30834e+06	1.07953e+07	524884.3,472688.3,315971.1	
1.0000	Ac-IPG-yeast-1-1-1.08330.08330.3	1.2e-07	<u>17/72</u>	R. <u>n29.04SVYDSRGNPTVEVELTTEK439.26</u> .6	sp P00924 ENO1_YEAST +1	2	2462.2395	1.95827e+06	1.42429e+07	417081.5,289362.8,194558.9	
<u>1.0000</u>	Ac-IPG-yeast-1-1-1.07870.07870.3	0.000231	<u>13/52</u>	K. <u>n29.04LSRAIQTANIALEK439.26</u> .A	sp P00950 PMG1_YEAST	1	1866.0793	1.70548e+06	1.16365e+07	300725.9,277894.0,107346.1	
1.0000	Ac-IPG-yeast-1-1-1.07563.07563.3	0.000203	<u>12/48</u>	K. <u>n29.04DVVTREYTINLHK439.26</u> .R	sp P0C2H8 RL31A_YEAST +1	2	1926.0430	702968	1.24334e+07	251100.6,227770.3,126984.0	
<u>0.9988</u>	Ac-IPG-yeast-1-1-1.06329.06329.3	0.696	<u>11/52</u>	K. <u>n29.04LVLVRHGQSEWNEK439.26</u> .N	sp P00950 PMG1_YEAST	1	2033.0913	681717	4.77765e+06	247265.2,229580.6,123972.0	
<u>0.9994</u>	Ac-IPG-yeast-1-1-1.07926.07926.3	0.00217	10/72	R. <u>n29.04SIAPAYGIPVVLHSDHC160.03AK439.26</u> .K	sp P14540 ALF_YEAST	1	2373.2370	1.62851e+06	8.71115e+06	243413.1,221734.3,165115.4	M(-155.1),0,740.385,-0.001,6254.6;M(-156.1),0,740.051,-0.0
0.9988	Ac-IPG-yeast-1-1-1.08861.08861.3	0.00522	<u>11/68</u>	K. <u>n29.04IGGIGTVPVGRVETGVIK439.26</u> .P	sp P02994 EF1A_YEAST	1	2090.2318	633286	6.6591e+06	225457.1,206643.7,131845.3	
0.9999	Ac-IPG-yeast-1-1-1.06736.06736.3	0.00335	<u>9/56</u>	K. <u>n29.04IYPGRGTLFVRGDSK439.26</u> .L	sp P04449 RL24A_YEAST +1	2	2004.1011	575172	2.72473e+06	222247.7,199969.1,143789.9	
0.9023	Ac-IPG-yeast-1-1-1.11233.11233.2 ST	0.0726	<u>4/34</u>	R. <u>n29.04SFDVPPPPIDASSPFSQK439.26</u> .G	sp P00950 PMG1_YEAST	1	2254.1376	639804	1.99186e+06	189855.8,148777.9,103828.8	
1.0000	Ac-IPG-yeast-1-1-1.10847.10847.3	0.000426	<u>15/64</u>	K. <u>n29.04ALENPTRPFLAILGGAK439.26</u> .V	sp P00560 PGK_YEAST	1	2106.2056	482013	3.15874e+06	172527.2,154608.7,110860.0	
1.0000	Ac-IPG-yeast-1-1-1.09442.09442.3	5.7e-07	<u>15/64</u>	K. <u>n29.04IVSNASC160.03TTNC160.03LAPLAK439.26</u> .V	sp P00358 G3P2_YEAST +3	4	2158.0981	2.00572e+06	1.93312e+07	169416.0,167327.3,118868.3	
1.0000	Ac-IPG-yeast-1-1-1.09266.09266.3	2.14e-06	<u>11/76</u>	K. <u>n29.04TSAVAALTEVRAEDEAALAK439.26</u> .L	sp P17076 RL8A_YEAST +1	2	2354.2548	815505	7.16469e+06	158161.9,161845.1,89759.4	
0.9975	Ac-IPG-yeast-1-1-1.08020.08020.3	0.385	<u>8/60</u>	K. <u>n29.04YAQDGAGIERELARIK439.26</u> .K	sp P14126 RL3_YEAST	1	2128.1495	824834	2.78199e+06	132469.4,109744.6,89193.2	
<u>1.0000</u>	Ac-IPG-yeast-1-1-1.07359.07359.3	0.00275	<u>11/60</u>	K. <u>n29.04TVMIAAHGNSLRGLVK439.26</u> .H	sp P00950 PMG1_YEAST	1	2005.1361	349374	2.41765e+06	108782.1,94074.6,71460.5	
0.9223	Ac-IPG-yeast-1-1-1.06350.06350.3	1.6	<u>3/40</u>	K. <u>n29.04NIVEFHSDHMK439.26</u> .L	sp P06169 PDC1_YEAST	1	1694.8305	160852	3.35394e+06	104704.5,86711.9,84888.3	
1.0000	Ac-IPG-yeast-1-1-1.05512.05512.3	0.000841	<u>3/40</u>	M. <u>n29.04NFSHGSYEYHK439.26</u> .5	sp P00549 KPYK1_YEAST	1	1706.7908	208583	4.87777e+06	103630.2,105907.0,71181.5	
<u>1.0000</u>	Ac-IPG-yeast-1-1-1.05694.05694.3	0.0145	<u>9/44</u>	K. <u>n29.04ALNEEAEARRLK439.26</u> .N	sp P0CX82 RL19A_YEAST +1	2	1737.9592	377602	882798	102408.1,91357.6,76992.9	
<u>0.9999</u>	Ac-IPG-yeast-1-1-1.09738.09738.3	0.0738	7/68	K. <u>n29.04SFLESVIRDSVTYTEHAK439.26</u> .R	sp P02309 H4_YEAST	1	2420.2442	309493	1.58101e+06	97209.5,78974.3,64076.4	
<u>0.9953</u>	Ac-IPG-yeast-1-1-1.07541.07541.2	0.0568	<u>6/14</u>	R. <u>n29.04EVLGEQGK439.26</u> .D	sp P00549 KPYK1_YEAST	1	1197.6460	364756	2.79228e+06	88068.0,78618.8,77815.7	
0.9792	Ac-IPG-yeast-1-1-1.08567.08567.3	0.183	<u>5/56</u>	R. <u>n29.04LVIVTDPRSDAQAIK439.26</u> .E	sp P32905 RSSA1_YEAST	1	1964.1161	280769	1.64864e+06	86562.6,102413.0,56210.7	
1.0000	Ac-IPG-yeast-1-1-1.07839.07839.3	3.3e-05	<u>13/56</u>	F. <u>n29.04AEALRIGSEVYHNLK439.26</u> .S	sp P00924 ENO1_YEAST	1	2038.1066	280726	2.43851e+06	83421.3,39456.8,23738.8	
0.9892	Ac-IPG-yeast-1-1-1.05824.05824.3	0.958	<u>6/48</u>	K. <u>n29.04LVERAVSEDPRIK439.26</u> .M	sp P32527 ZUO1_YEAST	1	1850.0480	618037	1.97821e+06	79985.4,76044.3,66386.6	
1.0000	Ac-IPG-yeast-1-1-1.09271.09271.3	3.18e-05	13/68	K. <u>n29.04YVDEQVELADAAPPPEAK439.26</u> .L	sp P16387 ODPA_YEAST	1	2280.1380	421155	1.87633e+06	77323.9,86621.9,47663.7	
1.0000	Ac-IPG-yeast-1-1-1.04614.04614.3	0.0229	<u>9/48</u>	K. <u>n29.04TAEQVAAERAARK439.26</u> .A	sp P05737 RL7A_YEAST	1	1738.9545	447613	1.1847e+06	71672.2,71510.2,64837.1	

pepXML

QuanTic Normalized Results 1:1:1

QuanTic Normalized Results 1:2:5

This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution <u>License</u>, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

analytical chemistry

pubs.acs.org/ac

Article

A Versatile Isobaric Tag Enables Proteome Quantification in Data-Dependent and Data-Independent Acquisition Modes

Xiaobo Tian, Marcel P. de Vries, Hjalmar P. Permentier, and Rainer Bischoff*

Cite This: Anal. Chem. 2020, 92, 16149–16157

 ACCESS
 Image: More
 Image: Article Recommendations
 Image: Supporting Information

ABSTRACT: Quantifying proteins based on peptide-coupled reporter ions is a multiplexed quantitative strategy in proteomics that alleviates the problem of ratio distortion caused by peptide cofragmentation, as commonly observed in other reporter-ion-based approaches, such as TMT and iTRAQ. Data-independent acquisition (DIA) is an attractive alternative to data-dependent acquisition (DDA) due to its better reproducibility. While multiplexed labeling is widely used in DDA, it is rarely used in DIA, presumably because current approaches lead to more complex MS2 spectra, severe ratio distortion, or to a reduction in quantification accuracy and precision. Herein, we present a versatile acetyl-alanine-glycine (Ac-AG) tag that conceals quantitative information in isobarically labeled peptides and reveals it

upon tandem MS in the form of peptide-coupled reporter ions. Since the peptide-coupled reporter ion is precursor-specific while fragment ions of the peptide backbone originating from different labeling channels are identical, the Ac-AG tag is compatible with both DDA and DIA. By isolating the monoisotopic peak of the precursor ion in DDA, intensities of the peptide-coupled reporter ions represent the relative ratios between constituent samples, whereas in DIA, the ratio can be inferred after deconvoluting the peptide-coupled reporter ion isotopes. The proteome quantification capability of the Ac-AG tag was demonstrated by triplex labeling of a yeast proteome spiked with bovine serum albumin (BSA) over a 10-fold dynamic range. Within this complex proteomics background, BSA spiked at 1:5:10 ratios was detected at ratios of 1.00:4.87:10.13 in DDA and 1.16:5.20:9.64 in DIA.

QuanTic Flexible Options

K:172.075845:-113.0477:-114.0511:-115.0545

COUPLED

 Option that restricts the quantitation to using only the unfragmented precursor-coupled neutral losses for Quantic

DIAMODE

 Option that allows deconvolves quantitative values for multiple isotope, problem common to DIA data

QuanTic QuanticProteinParser

- Combine Quantic PSM quantitation to compute protein level quantities using PSM stats weighted by intensity
- Fully integrated with ProteinProphet
 - Input and output are the same protXML file
- Requires no user input other than the input file
- Visualized by ProtXMLViewer.cgi

QuanTic **ProtXML Protein View**

ProtXML Viewer: interact-Ac-AG-yeast-125_DDA.NOSTATIC.quantALLions.prot.xml

protXML

All	Proteins	Selected Entries	File & Info	Filter & Sort		Models >					I -	
#	Main Entry Acce	ession			NTT	Probability	# Tot PSMs	% Coverage Weight	% Spectrum ids NSP	Quantic:	n weight	
 1	gi 219616	05 gb AAH34697.1	1 (584 aa) (CONTAM	INANT) Keratin 10 [Homo sap	ipiens]	1.0000	3	6.3%	0.07%		3	
2	sp 01351	6 RS9A_YEAST (1	197 aa) 40S ribosomal p	rotein S9-A OS=Saccharomy	/ces cere	1.0000	9 🗖	29.9%	0.11%		6	
3	sp 01446	7 MBF1_YEAST (1	151 aa) Multiprotein-brid	Iging factor 1 OS=Saccharom	nyces cer	1.0000	7	44.4%	0.17%		6	
4	sp P00330	DIADH1_YEAST (3	348 aa) Alcohol dehydro	genase 1 OS=Saccharomyce	es cerevisi	1.0000	44	56.9%	0.90%		25	
5	sp P00331	1 ADH2_YEAST (3	348 aa) Alcohol dehydro	genase 2 OS=Saccharomyce	es cerevisi	1.0000	2	25.3%	0.23% 🛽		10	
6	sp P00431	I CCPR_YEAST (3	361 aa) Cytochrome c p	eroxidase, mitochondrial OS=	=Sacchar	1.0000	2	4.4%	0.05%		2	
 7	sp P00445	5 SODC_YEAST (1	154 aa) Superoxide disr	nutase [Cu-Zn] OS=Saccharo	omyces c	1.0000	9 🗖	50.0%	0.21% 🛽		6	
8	sp P00498	B HIS1_YEAST (297	7 aa) ATP phosphoribos	yltransferase OS=Saccharom	nyces cer	1.0000	3	9.4% 🗖	0.07%		3	
9	sp P00560	OPGK_YEAST (416	6 aa) Phosphoglycerate	kinase OS=Saccharomyces	cerevisia	1.0000	82	74.8%	1.94%		40	
10	sp P00815	5 HIS2_YEAST (795	9 aa) Histidine biosynthe	esis trifunctional protein OS=5	Saccharo	1.0000	9 🗖	12.4%	0.22%		8	
11	sp P00817	7 IPYR_YEAST (28	7 aa) Inorganic pyropho	osphatase OS=Saccharomyce	es cerevis	1.0000	16	44.9%	0.39% 🗖		11	
12	sp P00830	OATPB_YEAST (5	11 aa) ATP synthase su	bunit beta, mitochondrial OS=	=Sacchar	1.0000	4	9.4%	0.10%		4	
13	sp P00931	1 TRP_YEAST (707	aa) Tryptophan syntha	se OS=Saccharomyces cerev	visiae (str	1.0000	4	5.9%	0.09%		3	
14	sp P00942	2 TPIS_YEAST (248	8 aa) Triosephosphate is	somerase OS=Saccharomyce	es cerevis	1.0000	21	51.2%	0.46% 🗖		12	
15	sp P00950	PMG1_YEAST (2	247 aa) Phosphoglycera	te mutase 1 OS=Saccharomy	yces cere	1.0000	30	58.7%	0.70% 🗖		17	
16	sp P00958	BISYMC_YEAST (7	751 aa) MethioninetRN	VA ligase, cytoplasmic OS=Sa	accharom	1.0000	5 🗖	6.8% 🗖	0.12%		3	
17	sp P02293	3 H2B1_YEAST (13	31 aa) +1		≅	1.0000	5 🗖	31.3%	0.12%		5	
18	sp P02309	9 H4_YEAST (103 aa	a) Histone H4 OS=Sacc	haromyces cerevisiae (strain	ATCC 20	1.0000	3	36.9%	0.07% 🛙		2	
19	sp P02400	ORLA4_YEAST (11	10 aa) 60S acidic ribosc	omal protein P2-beta OS=Sac	ccharomy	1.0000	3	31.8%	0.07%		2	
20	sp P02406	6 RL28_YEAST (14	19 aa) 60S ribosomal pro	otein L28 OS=Saccharomyce	es cerevisi	1.0000	 11 	43.0%	0.25%		7	
21	sp P02407	7 RS17A_YEAST	(136 aa) +1		≅	1.0000	13 🗖	58.1%	0.31% 🗖		8	
22	sp P02829	9 HSP82_YEAST	(709 aa) ATP-dependen	t molecular chaperone HSP8	32 OS=Sa	1.0000	3	46.3%	0.55% 🗖		31	
23	sp P02994	4 EF1A_YEAST (45	58 aa) Elongation factor	1-alpha OS=Saccharomyces	s cerevisi	1.0000	33	58.5%	0.80% 🗖		23	
24	sp P04147	7 PABP_YEAST (5	77 aa) Polyadenylate-bi	inding protein, cytoplasmic an	nd nuclea	1.0000	16 🗖	30.0%	0.38% 🗖		14	
25	sp P04449	9 RL24A_YEAST	(155 aa) 60S ribosomal	protein L24-A OS=Saccharor	myces ce	1.0000	10 🗖	33.5%	0.13% 🛙		9	
26	sp P04456	6 RL25_YEAST (14	12 aa) 60S ribosomal pro	otein L25 OS=Saccharomyce	es cerevisi	1.0000	 11 	49.3%	0.26%		8	
27	sp P04801	I SYTC_YEAST (7	34 aa) ThreoninetRNA	ligase, cytoplasmic OS=Sac	ccharomy	1.0000	10 🗖	10.9% 🗖	0.24%		9	
28	sp P04802	2 SYDC_YEAST (5	557 aa) AspartatetRNA	ligase, cytoplasmic OS=Saco	ccharomyc	1.0000	7	14.0%	0.17%		6	
29	sp P04806	6 HXKA_YEAST (4	485 aa) Hexokinase-1 O	S=Saccharomyces cerevisiae	e (strain A	1.0000	24	37.3%	0.48%		16	
30	sp P04807	7 HXKB_YEAST (4	486 aa) Hexokinase-2 O	S=Saccharomyces cerevisiae	e (strain A	1.0000	18 🗖	29.2%	0.34%		13	
31	sp P04840	VDAC1_YEAST	(283 aa) Mitochondrial	outer membrane protein porir	n 1 OS=S	1.0000	5	15.2%	0.12%		5	

QuanTic ProXML Peptide View

ProtXML Viewer: interact-Ac-AG-yeast-125_DDA.NOSTATIC.quantALLions.prot.xml

protXML

All	Proteins	Selected Entries	File & Info	Filter & Sort	Models >							
#	Main Entry Ac	ccession			NTT Probability	# Tot PSMs	% Coverage Weight	% Spectrum ids NSP	Quantic:	n	weight	_
4	sp P003	30 ADH1_YEAST	(348 aa) Alcohol dehydrog	genase 1 OS=Saccharomyces	cerevisi 1.0000	44	56.9%	90%		25		
+2	n ₂₉ AM ₁₄₇ GYR	VL			0.9987	10	0.26	24.50				
+2	n ₂₉ AMGYRVLG	GIDGGEGK300			0.9997	10	1.00	23.77		1	0.89	
+2	n ₂₉ AM ₁₄₇ GYR	VLGIDGGEGK ₃₀₀			0.9997	1	1.00	23.77		1	1.18	
+3	n ₂₉ AM ₁₄₇ GYR	VLGIDGGEGK ₃₀₀			0.9991	1	1.00	23.77		1	15.63	
+2	n ₂₉ ANELLINV	/K ₃₀₀			0.9997	3	1.00	23.77		3	7.41	
+2	n ₂₉ ATDGGAHG	GVINV			0.9997	1	1.00	23.77				
+2	n ₂₉ ATDGGAHG	GVINVSVS			0.9995	1	1.00	23.77				
+2	n ₂₉ CCSDVFNC	2VVK ₃₀₀			0.9996	1	1.00	23.77		1	0.98	
+2	n ₂₉ DIPVPK ₃₀	0 ^{PK} 300			0.9997	6	0.50	24.26		6	24.95	
+2	n ₂₉ DIVGAVLK	< ₃₀₀			0.9973	2	1.00	23.77		2	1.38	
+2	n ₂₉ EAAIEAST	ΓR			0.9565	1	0.36	24.46				
+3	n ₂₉ EELFRSIG	GGEVFIDFTK ₃₀₀ EK ₃₀₀			0.7543	1	1.00	24.29				
+2	n ₂₉ EK ₃₀₀ DIV	GAVLK ₃₀₀			0.4201	1 🛙	1.00	24.34				
+2	n ₂₉ GAAGGLGS	SLAVQYAK ₃₀₀			0.9997	1	0.50	24.26		1	0.46	
+3	n ₂₉ GAAGGLGS	SLAVQYAK ₃₀₀			0.9997	1	0.50	24.26		1	0.58	
+2	n ₂₉ GQIVGRYV	/VDTSK ₃₀₀			0.9997	2	1.00	23.77		2	2.44	
+3	n ₂₉ GQIVGRYV	/VDTSK ₃₀₀			0.9996	1	1.00	23.77		1	4.84	
+2	n ₂₉ GVIFYESH	IGK300			0.9997	3	1.00	23.77		3	61.56	
+3	n ₂₉ GVIFYESH	IGK300			0.9997	1	1.00	23.77		1	2.38	
+2	n ₂₉ GYRVLGID	DGGEGK ₃₀₀			0.9997	1	1.00	23.77		1	2.20	
+2	n ₂₉ IGDYAGIK	< ₃₀₀			0.9992	2	0.50	24.27		2	16.80	
+2	n ₂₉ LAVQYAK ₃	800			0.9777	1	0.50	24.30		1	1.78	
+3	n ₂₉ LPLVGGHE	EGAGVVVGMGENVK ₃₀₀			0.9997	1	0.50	24.26		1	0.31	
+3	n ₂₉ LPLVGGHE	EGAGVVVGM ₁₄₇ GENVK ₃₀₀			0.9996	1	0.50	24.27		1	0.44	
+2	n ₂₉ RVLGIDGO	GEGK ₃₀₀			0.9997	1	1.00	23.77		1	1.60	
+2	n ₂₉ SANLM ₁₄₇	AGHWVAIS			0.9994	1	1.00	23.77				
+2	n ₂₉ SDVFNQVV	/K ₃₀₀			0.9994	1	0.55	24.21		1	1.44	
+2	n ₂₉ TVLVGMPA	AGAK ₃₀₀			0.9997	1	1.00	23.77		1	1.61	
+2	n ₂₉ VLGIDGGE	EGK ₃₀₀			0.9993	1	1.00	23.77		1	5.20	
+2	n ₂₉ VVGLSTLF	PEIYEK300			0.9997	3	1.00	23.77		3	0.78	
+3	n ₂₉ VVGLSTLF	PEIYEK300			0.9997	2	1.00	23.77		2	0.80	
+2	n ₂₉ YVVDTSK ₃	300			0.9935	1	0.33	24.44		1	4.32	
QuanTic **DIAMODE**

 Deconvolves overlapping Isotopes of DIA data to extract quantitative signals, uses Mike's Mercury8 code to predict theoretical isotopic distributions of identified pertides

QuanTic : PTM Molecular Formula

 Quantic allows the user to specify PTM molecular formulas for better isotopic distribution estimation with Mercury8

QuanTic : Protein Level DIAMODE

Acknowledgements

- Mukul Midha
- David Campbell
- Zhi Sun
- Mike Hoopmann
- Kristian Swearingen
- Luis Mendoza
- Eric Deutsch
- Rob Moritz
- Thank you for your attention!