Computing Information Content of PTM Site Assignments Institute for David D. Shteynberg¹, Eric W. Deutsch¹, David S. Campbell¹, Michael R. Hoopmann¹, Ulrike Kusebauch¹, Dave Lee², Luis Mendoza¹, Zhi Sun¹, Anthony Whetton², and Robert L. Moritz¹ Systems Biology ¹ Institute for Systems Biology, Seattle, WA, 98008, USA ² University of Manchester, Manchester, M13 9PL, UK

Overview

- Search algorithms are good at assigning the peptide sequence, but not necessarily at determining the correct positions of PTMs contained in the peptide
- **PTMProphet** part of the Trans-Proteomic Pipeline (TPP) evaluates all modifications possible given user settings and the assigned peptide sequence
- Current TPP version 5.2 is available at www.tppms.org

PTMProphet Method

For each modified PSM:

- . Compute accurate probabilities of each potential modification site being modified
- Compute information content statistics, thereby allowing comparison of PSMs having different numbers of potential modification sites and number of modifications

- Sum matched peak intensities: $\Psi(P)$ for peptide P
- Compute $\boldsymbol{\Psi}$ for each peptide possibility
- Pmod Punmod
- 5. Compute "common" matched peak intensity:
- $\boldsymbol{O}^{m} = \frac{\boldsymbol{\Psi}(\boldsymbol{P}^{mod}) \boldsymbol{C}(\boldsymbol{P}^{mod}, \boldsymbol{P}^{unmod})}{\boldsymbol{P}^{unmod}}$
- 8. Compute probability for each potential PTM site
- probabilities remain constant
- peptide
- 11. Record the output in pepXML

PTM Localization

For each PSM, evaluate all possibilities of peptide modification

4. For each potential PTM site **s** on the peptide, compute:

= argmax(\forall P with site s modified | Ψ (P))

= argmax(\forall P with site s unmodified | Ψ (P))

C(P^{mod}, P^{unmod})

6. Compute discretized observed maximum noncommon intensities:) and $\boldsymbol{O}^{u} = \frac{\boldsymbol{\Psi}(\boldsymbol{P}^{unmod}) - \boldsymbol{C}(\boldsymbol{P}^{mod}, \boldsymbol{P}^{unmod})}{\boldsymbol{P}^{unmod}}$

7. Compute observed maximum noncommon matched peaks:

 M^m and M^u

9. EM > 0 - apply expectation / maximization algorithm until

10. Normalize all probabilities by the number of modifications in the

S(0.000)EM(1.000)M(0.000)EEDLQGAS(1.000)QVK

Information Content

PROBLEM: Site Probabilities May Not Be Comparable

- Different numbers of potentially modified sites in different peptides
 - **SEMMEEDLQGASQVK** (2 phospho sites) SESSEEDLQGASQVK (4 phospho sites)
- · Different numbers of modifications in different peptides ^pSeS^pSeedlQGA^pSQVK (3 phospho mods)
 - ^pSeSSEEDLQGASQVK (1 phospho mod)

<u>*H^{norm}*: Multiple Modification & Site Normalized Shannon's Entropy</u>

Quantifies the amount of information stored in the PTM site assignment for a peptide with **s** modification sites and **m** modifications

• **s** modification sites with probabilities $p_1 \dots p_s$ of being modified

$$H_t^{norm} = -rac{1}{m} \sum_{i=1}^s p_i \log_{s/m} p_i$$
ange: [0, 1]

<u>M</u>_t: Localized Modifications Estimate

Estimates the number of modifications confidently localized that can be used to directly compare PSMs containing *m* modification $M_t = m - H_t$

> $H_t = -\sum_{i=1}^s p_i \log_{s/m} p_i$ where. M_t range: [0, m] the higher the score the greater the number of modifications localized in a PSM with *m* modifications

Normalized Per-Modification Information Content

Estimates the per-modification localization certainty that can be used to directly compare PSMs with different number of modifications $I_t = 1 - H_t^{norm}$

> H_t^{norm} is the normalized per modification entropy of where. modification of type *t*

> It range: [0, 1] the higher the score the higher the localization certainty

Mean Best Probability Statistic

Easy to compute and works well in practice Should be considered in the context of Information Content

$$B_t = \frac{\max_{\{i_1,\ldots,i_m \in 1,\ldots,s\}} \sum_{j=1}^m p}{m}$$

Results

- **Dataset 1:** a small reference dataset of synthetic phosphopeptides previously published (Ferries et al. Proteome Res. 2017) and used to evaluate confident site localization, measured with an Orbitrap Fusion Tribrid mass spectrometer
 - 175 distinct peptide sequences with 191 phosphorylation sites
- Dataset 2: a large in-house dataset of synthetic peptides with known phosphorylated sites, measured with a TripleTOF® 5600+
 - 1,342 chemically synthesized phosphopeptides with 5,329 potentially phosphorylated S, T and Y residues
- Dataset 3: a phospho-enriched cell lysate dataset (Nyman et al. J Proteomics. 2018) known to contain many mass modifications, measured with a Q Exactive
 - human macrophage cells infected with influenza A virus.

Dataset 1 Peptide Results: Mascot \rightarrow PTMProphet vs Mascot \rightarrow ptmRS

Dataset 2 Peptide Results: Mascot+X!Tandem \rightarrow PTMProphet

Support & Information

Support provided by:

- NIH, NIGMS grants: R01GM087221, R24GM127667, P50GM076547
- National Institute of Allergy and Infectious Diseases grant: R21AI133335
- National Institute of Biomedical Imaging and Bioengineering grant U54EB020406
- NHLBI grant: R01HL133135
- Medical Research Council (ADW)
- Cancer Research UK major centre award (20761)
- TPP: PTMProphet Resources
 - www.tppms.org/tools/ptm/

